Ergalics: A Natural Science of Computation

Richard T. Snodgrass
Department of Computer Science
University of Arizona
Tucson, AZ
rts@s. ari zona. edu

February 12, 2010

Abstract

If computer science is to truly become a “science,” as Newtlis, and Simon originally conceived,
then it must integrate three equally ascendant perspsctiwvathematics, science, and engineering. The
scientific perspective can help usunderstand computational toodsidcomputatioritself, through the
articulation ofenduring technology-independeptinciples that uncover new approaches and identify
technology-independent limitations. This reorientatigh yield an understanding of the todlevelop-
ersand the toolsersand will thus enable refinements and new tools that are moselgl aligned with
the innate abilities and limitations of those developerd asers. Incorporating the scientific perspec-
tive, to augment the mathematical and engineering perspschecessitates that the discipline study
different phenomena, seek a different understanding ofpeation, ask different questions, use differ-
ent evaluative strategies, and interact in different waigls ather disciplines. Doing so will add wonder,
engagement, and excitement to our discipline.

1 Introduction

Three quite distinct perspectives—mathematics, scieard engineering—have long been associated with
the discipline of computer science [Denning 2005a]. Mathtrs appears in computer science (CS) through
formalism, theories, and algorithms, which are ultimateigthematical objects that can be then expressed
as computer programs and conversely. Engineering apgeargh our concern with making things better,
faster, smaller, and cheaper. Science may be defined asgexgfeneral, predictive theories that describe
and explain observed phenomena and evaluating thesedtgaicken 1984, Chalmers 1999]. Such theo-
ries include a statement of “why” and are amenable to prediston heretofore unexamined phenomena,
that can be subsequently tested on those phenomena [D&vigk 1

In an influential letter in the journgbcience Nobel Prize winner Herbert Simon and his colleagues
Alan Newell and Alan Perlis defined the nascent disciplin€8fas a “science of the artificial,” strongly
asserting that “the computer is not just an instrument bitempmenon as well, requiring description and
explanation” [Newell, Perlis, and Simon 1967, page 1374md furthered that line of reasoning in his
book, Sciences of the Artificial whose third edition was published in 1996.

Simon’s promise of a science of computational phenomenanbaget been realized by this fortieth
anniversary of his compelling argument. Since its foundimghe late 1950’s, CS has uncovered deep
mathematical truths and has constructed beautifully emged systems that have ushered in the “age of
information technology.” However, there is as yet littledenstanding of these highly complex systems, what
commonalities they share, how they can be used to consteucsystems, why they interact in the ways they
do with their environment, or what inherent limitations strain them. As an example, while solid-state
physics has provided a detailed understanding of VLSI, lemldesign rules that allow the construction

of highly complex processors, there is no similar undeditan of the efficacy of programming language

constructs and paradigms that would allow programmingdagg designers to predict the efficiency of code
written in their new languages. Nor do we have a detailed rataleding of the failure modes of software

components and systems assembled from those componentsjemstanding that would allow us to predict

failure rates and to engineer systems to predictably deerémse rates.

The attainments of CS are largely the result of three cartiri factors: the exponential growth of
computing, storage, and communication capacity througbrile Law; the brilliance of insightful design-
ers; and the legions of programmers and testers that make twnplex systems work by dint of sheer
effort. Unfortunately, CS is now constrained in all threetfas: the complexity of individual processors
has leveled off, the systems are at the very edge of commsiEimehy even the most skilled architects, and
the programming teams required for large systems now numitlee thousands. Development “by hook or
by crook” is simply not scalable, nor does it result in optimaffective systems. Specifically, unlike other
engineering disciplines that have solid scientific fouraie, CS currently has no way of knowing when a
needed improvement can be attained through just pushirgpadigy harder, or whether a new technology
is needed. Through a deeper understanding of computatiooial and computation itself, ouir discipline
can produce new tools that are more robust, more effectigenere closely aligned with the innate abilities
and limitations of the developers and users.

CS has not yet achieved the structure and understandingttiext sciences aspire to and to which the
public ascribes the ascendancy of science. Consider asrjastxample how drugs now can be designed
based on their desired shape, which was enabled by deepstar#ing of protein folding, chemical bond-
ing, and biological pathways. This understanding is dumarnily to the adoption of scientific reasoning.
To achieve such understanding of computational tools antpatation, the mathematical and engineering
perspectives, while critical, are not sufficient. Rathdratis needed is the application of a radically differ-
ent perspective, that of the scientific method, to enablaestdcientific theories of computational artifacts.
(We will shortly examine one such scientific theory, Denrsritheory of Locality.) Adopting such a per-
spective within CS, to augment the existing, vital perspgestof mathematics and engineering, requires that
we study different phenomena, seek a different understgnafi computation, ask different questions, use
different evaluative strategies, and interact in difféngays with other disciplines.

2 Studying Different Phenomena

CS has been prolific and influential in creating computatidoals that allow human intelligence to be
amplified. Computational tools, defined broadly, includerfalisms (e.g, order notation), conceptual de-
vices (e.g., UML), algorithms, languages (e.g., Java, S®bffware systems, hardware (e.g., RISC), and
computational infrastructure (e.g., the internet).

The central premise of this essay is the following.

The focus of the discipline of CS over its first fifty years hesnbto build larger and larger
assemblages of algorithms, data structures, and indivigagrams into massive, complex,
and highly-useful systems. These computational artifamtsinherently deserving of study.
These tools are sufficiently stable that meaningful statésregoout them are possible. Studying
the tools themselves, their behavior, their structure, had users interact with them, as well
as studying computation itself, will yield insights thaliwhable nascent scientific theories that
can serve to improve the tools in fundamental ways, to exfilaidamental limitations, and to
understand the role of computation in nature.

This is admittedly an audacious claim. Is it just wishfulnking? The purpose of this essay is to
characterize a science of computation and to explain hoarittcansform CS. Our argument has the fol-
lowing form. Science provides a different understandirantmathematics or engineering: that of general,
testable, predictable scientific theories. It is theserikedhat have enabled the great scientific advances
of the last century. There are several fundamental reasbggheories of computation can be as enduring
and general as the theories concerning other aspects otragarticulated by other sciences. A science
of computational tools and of computation generally couldieve advances of similar import by utilizing
the methodology that other sciences use to generate anthééstheories, specifically, that of empirical
generalization and model testing. Both the history of ratacience and the history of CS provide strong
predictors of disruptive innovations that could be enaltiea vigorous discipline of science within CS.

To understand the potential offered by the scientific pextiye within CS, one must first appreciate
the specific goals and methodologies that scientists (buyetocomputer scientists) adopt as absolutely
fundamental.

3 Seeking A Different Understanding

CS has been largely dominated by the engineering perspecfig a result of brilliant engineering, our
discipline has generated a good number of industries, eaahving around stable, long-standing, com-
plex, prevalently used computational tools. The engimgepgerspective can be characterized as seeking
improvement, such as faster, more functional, more rediabl

CS has also successfully utilized the mathematical petispe€omplexity theory, asymptotic analysis,
serializability theory, and other deep results have infmirthe study of computation in general and of the
creation of software and hardware artifacts. The matheadgtierspective can be characterized as seeking
elegant formal structures and provable theorems withisdtstructures.

The scientific perspective seeks a different kind of undeding: to explain phenomena encountered
in nature. These explanations take the form of falsifisdientific theorie§Popper 1969] andcientific
laws[Achinstein 1971]. The challenge to a scientist of any ilkaseduce complex phenomena to simpler,
measurable phenomena in such a way that the scientific coityragnees that the essences of the original
phenomena are captured. For example, Newton articulatedaticept of “force” to explain the motion of
the planets, John Nash provided an interpretation of hurehawor as game playing, and E. O. Wilson and
others dramatically changed ethology and ecology by inicody the ideas of energy budget and optimal
foraging strategies.

The term “theory” in CS is a synonym for “formalism” or “comte mathematics.” When someone
in CS does “theory,” they are using the mathematical petsgecin logic, formal systems, and theorem
proving, a “theory” is a purely formal object: a maximal séaesertions (strings) that can be deduced from
axioms via inference rules. However, the term “theory” nesmmething quite different in science.

Science seeks general, predictive theories that desaribexplain observed phenomena. Such theories
have four primary attributes.

Parsimony:Each explains a variety of phenomena with a short, cohexghation (Occam'’s razor),
thereby reducing the number of independent phenomena.

Generality: Each theory explains a wide range of phenomena.

Prediction: Each anticipates future events, often to a high degree ofracg.

Explanatory powerEach provides a compelling underlying mechanism.

space (addresses)

time
» (phases)

Figure 1: Locality-sequence behavior during program etteay[Denning 2005b, page 23])

Successful theories are also highly useful in engineebirgause they can be employed to design mecha-
nisms that ensure positive effects or avoid negative effect

To illustrate these benefits, consider one of the few ext@ansfic theories of computation, Peter Den-
ning’s Theory of Locality [Denning 2005b]. It is useful toaine this theory in order to understand specif-
ically how a scientific theory is radically different fromettheorems of the mathematical perspective and
the architectures and design rules of the engineering getigp. The locality theory also illustrates why it
is critical to take the creator and user into account.

The locality theory arose from a study of the cost of managage transfers between main memory and
a much slower disk drive. “Because a bad replacement digoigbuld cost a million dollars of lost machine
time over the life of a system,” this was a critical problenmstive. Denning noticed when measuring the
relevant phenomenon, the actual page usage of prograrhtheha were “many long phases with relatively
small locality sets” (see Figure 1); “each program had ita digtinctive pattern, like a voiceprint.” He found
that nothing about the structure of memory or the processerwging instructions required or forced such
locality sets. Instead, it was a clear, repeated pattemwsagnany systems, users, and programs. Denning
abstracted this observed behavior as follows. Defnte, t) as thedistancefrom a processor to an objeet
at timet. If D(x,t) < T for a specified distance threshdld thenz is defined to be in théocality setat
time ¢. Locality theory states that if is in the locality set at time, then it is likely to be in the locality set
at timet + ¢, for small§, and so should not be removed from the cache.

The locality principle is inherently predictive and has béested many, many times, for many distance
functions. It is general: This theory applies to computalosystems of all kinds: “in virtual memory to
organize caches for address translation and to designglaesment algorithms, ... in buffers between com-
puters and networks, ... in web browsers to hold recent wgb%a.. in spread spectrum video streaming
that bypasses network congestion” [Ibid, pages 23-24].

Where the locality principle becomes a truly scientific ttyeis in its explanatory power. Specifically,
this theory identifies the source of the observed localitpe @ight think that perhaps this observed phe-
nomenon of a locality set comes about because of the von Neuarahitecture. But locality was originally
observed not at the level of the instruction set, but betvileemain memory and the disk. And as just men-
tioned, locality has been observed in contexts unrelatédetwon Neumann architecture. Instead, locality
appears to originate in the peculiar way in which humans roegainformation* “The mind focuses on

1This explanation by Denning of how locality works is remiést in some ways of Turing’s explanation of his model of

a small part of the sensory field and can work most quickly @nabjects of its attention. People gather
the most useful objects close around them to minimize the imd work of using them.” Psychology has
described this process in quite precise terms and with cliimgpéheories of its own: the persistent steer-
ing of attention, the chunking and limited size of shortmienemory, the serial processing of certain kinds
of cognition. This realization, this scientific theory othdity, thus holds in many disparate contexts, and
has enabled specific engineering advances, includingteegiaching, virtual memory algorithms based on
efficiently computing the working set, and buffer stratsgrdthin DBMSes and network routers, thereby
increasing the performance, scalability, and reliabiitynany classes of computational tools.

Another theory of computational tools is Vessey's TheonCofynitive Fit, which states that “perfor-
mance on a task will be enhanced when there is a cognitive ditofmh between the information emphasized
in the representation type and that required by the task’ fjessey 1991]. Both Locality Theory and
Theory of Cognitive Fit are true scientific theories becathsy are parsimonious, general, predictive, and
explanatory.

An important component of any scientific theory is a delirabf its domain of applicability which
defines the conditions under which nature (or computatito@k) behave in a law-like way. Newtonian
mechanics applies throughout the universe, but not at spagproaching that of light nor at very small
dimensions. As Thomas Kuhn [1996] emphasized, most sstetiork within a paradigm with established
theories. Much of what a scientist typically does relateasmertaining the precise domain of a theory. But
within that explicitly-stated domain, the theory shoulddy@nd tests of that theory over phenomena with
that domain should not fail. For scientific theories of cotagional tools, the domain might be a class of
tool, e.g., a database management system (DBMS). Or theidanight be restricted, say to an attribute
of a tool, e.g., to a DBMS utilizing cost-based query optiatian. Or the theory might be more general,
with a domain covering multiple classes of tools, as withttieory of cognitive fit. As another example,
the established fact that caching works so well (whether @nnmemory, disks, networks, internet) is a
testament that computational tools quite reliably exHimlity. That said, the domain of applicability for
locality does not include programs constructed explidithavoid locality.

4 Why Might Such Theories Hold?

Science desires theories tleatdure i.e., that are not tied to a set of specific circumstances amarticular
time. Suppose that in studying phenomena related to a catiqnel tool, one develops a theory that is rea-
sonably general and parsimonious, that predicts accyrttelobserved phenomena, and has a compelling
explanation for those phenomena. Why might such a theoryue® tin particular, why might predictions
when the theory is being tested in new ways in the futurelsilborne out?

The endurance of a theory of computational tools might anisd least three somewhat different ways.
First, it might be that the predictive power derives from soeep mathematical theorem that has yet to be
proven or even stated. For example, perhaps Zipf's law [[L@Bat for many tanked data, the relative fre-
guency of thenth-ranked item is given by the Zeta distribution) will soragde shown to be a consequence
of a yet-to-be stated mathematical theorem with an assacf@bof. The undiscovered theorem is what has
caused predictions of this theory to hold. Specifically,ftikire of a test of an hypothesis of such a theory
might require an internal mathematical contradiction. rétere possibly phenomena of computational tools

“machine,” in which he appealed to how computing was donehioyn@n) computers, an explanation which implicitly inclsce
notion of locality. “Computing is normally done by writingetain symbols on paper. We may suppose this paper is divided
squares like a child’s arithmetic book. ... Besides ... gearof symbols, the ... operations must include changesbfliition of

observed squares. The new observed squares must be imehetkabgnisable by the computer [a human computer—echjnkt
it is reasonable to suppose that they can only be squareswdigiance ... does not exceed a certain fixed amount.” [JU937,

pages 249-50]

that can be predicted and generalized into theories thatuerdecause of yet-to-be-conceived mathematical
truths.

A second, potent source of endurance and generality oftffaeheories of computational tools is the
very specific psychological abilities and limitations ofnhans. As emphasized above, locality in programs
arises from “the peculiar way in which humans organize imfation.... The locality principle flows from
human cognitive and coordination behavior...These behswaire transferred into the computational systems
we design” [Denning 2005b, page 24]. In Codd’s Relationakdry, the relational data model (data as
tables) and its associated tuple relational calculus éérim part from the syntactic structure of natural
language queries. Indeed, the notion of relation, undenéme of “predicate” goes back to the Greeks’
attempts to identify the structure of logical arguments iideo to lay down the rules (of inference) for
correct reasoning. They realized, as logic does todaythieat is something fundamental in the way that
humans organize thought using predicates (relations)f@idranipulation. The critical fixed point of all
computational tools that we know about is that they wereteteand are used bByomo sapiens

A third source of endurance and generality of theories of matational tools is that of nature itself,
independent of the role of humans in the construction andofi®mputational tools. Denning has ar-
gued that “computation and information processes have Hesovered in the deep structures of many
fields” [Denning 2007, page 13]; he gives as examples cortipataia DNA expression and computation
via combining quantum particle interactions through quanelectrodynamics (QED). Just as there are laws
of physics and chemistry and biology that govern naturehqges there are laws that govern computation in
nature. Then computational tools would be subject to thass bBnd theories. Perhaps Newell and Simon’s
Physical Symbol System Hypothesis (“A physical symbol eyshas the necessary and sufficient means
for general intelligent action”) [Newell & Simon 1976] deeis from such natural processes. Perhaps the
observed preference by humans for locality also derivan friatural processes of computation, in that there
was no other way for us to thinkThatwould be an amazing discovery!) Or perhaps there are cortigueih
models in nature that are radically different from how humprocess information.

5 Ergalics

The phrase “natural science of computational tools as geetise of computer science” is verbose and
awkward. The term “science of computer science” is shontérshll awkward. Hence, we use the term
“ergalics” for this new science. It derives from the Greekrevergaleion {pyaewwr), translated by both
Woodhouse’€nglish Greek Dictionaryand Liddell and Scott'®\ Greek-English Lexicoas “tool” or “in-
strument.” This etymology is related to the Greek word ergenwr), meaning “work,” “job,” or “task,”
and is the basis of the English words “ergonomics,” an agmigence of equipment design, “ergometer,”
an apparatus for measuring the work performed by a group stlas, and the “erg,” a CGS unit of work.
These other terms emphasize the physical body; ergalichasiges computation. Some advantages of
this term are it is a new word (Google it) and thus not overohdith existing meaning, it is short, it is
consistent with other scientific terminology, and it doéfi@ve negative connotations.

The goal of ergalics is to express and test scientific theafecomputational tools and of computa-
tion itself and thus to uncover general theories and lawsgbeern the behavior of these tools in various
contexts. The challenge now before the CS discipline is dadben its reliance upon the mathematical and
engineering perspectives and to embrace the scientifip@etige.

The class of computational tools is broad and includes ftisma, conceptual devices, algorithms,
languages, software systems, hardware, and computatidgrestructure. Expanding on one of these cat-
egories, software systems include operating systems (grmx, Windows), database management sys-
tems (e.g., MySQL, Oracle), compilers and software devakt environments (e.g., Eclipse, gcc, Visual

Studio), GUIs (e.g., Java Swing, Windows), internet senferg., Apache, Internet Information Server),
browsers (e.qg., Internet Explorer, Mozilla Firefox), aretwork protocols (e.g., DNS, TCP/IP). Note that in
each case there exist both open source systems and propsgséems, that each system involves a highly
functional and quite complex interface, and that each sy$i@s been around for at least a decade. Also note
that each kind of software system is associated with an aameasbillion US$ industry and that each each
of the categories can be enumerated and expanded, for CSdthged many significant, long-standing,
mature computational tools.

Figure 2 illustrates the range of phenomena to be investigaithin ergalics and for which scientific
theories can be advanced and tested. A computational tiosticreated (arc A) by a person or team of
people given an identified task. This tool is then used by agrefarc B) to accomplish that task (arc
C). Phenomena can be associated with each arc. Most CSatessarsiders how to create and compose
tools that accomplish a specific task (arc C). Such reseamshiders such aspects as functionality (what
does the tool actually do?), performance (what resourcgs,@PU execution time, disk and network band-
width, cache, main memory, disk space, does the tool regjliaad reliability (to what extent does the tool
accommodate failures of the hardware and software compmitentilizes?). For example, the problem
Denning first considered in his doctoral dissertation thtimately lead to his Theory of Locality was the
performance implications of disk reads, specifically themgimenon of thrashing.

The study of an individual tool, while potentially quite ightful, is however only a small portion of
the phenomena that can be investigated and the insightahgtossible. One could study how that tool
was influenced by human traits. (We argued earlier thatitycdleory ultimately concerned exactly that.)
Viewed another way, a computational tool is a means to bridlgeomputation gappetween the abilities
of the user and the requirements of the task. Hence, one studg how tools are actually used and their
effectiveness in order to discover enduring predictiond #reories about such use. (It is important to
recognize that some systems may be sufficieatljhocthat there may not be interesting scientific theories
that can be applied to them. However, for established, liwegk computational tools such as those listed
above, it is likely that there is much to be gleaned from edrefientific analysis.)

Creator

User ‘ Computational Task
B ‘ Tool C

Figure 2: Computational tools

How does ergalics relate to Simon’s “sciences of the awifigSimon 1996]? In terms afnethodology
andgoals the two are identical: both use the methodology of emgiscénce and have as the ultimate
goal the articulation and testing of scientific theoriestdmms ofsubject of studySimon’s sciences target
“artifacts,” which are things that humans construct to aggplish a task. The subject of study of ergalics
is computation in naturand computational tools; the latter are artifacts but the farmenot. We are in
complete agreement with Simon and with Peter Denning [199B5a, 2007], Peter Freeman and David
Hart [2004], Walter Tichy [1998], and others who argue thegfiimate science can extend beyond what
people traditionally think of as "natural” science, to indé the scientific study of artifacts as well. It is in
terms ofepistemologyhat the two differ the most. For Simon, the goal or task of difieat is central; of
primary interest is how the artifact accomplishes (or net) goal. Ergalics concerns both the interaction of

7

the artifact and its goal as well as the artifact itself. Baraple, the locality exhibited by programs occurs
independently of the design goal of the program; ratheglitycarises through the innate information pro-
cessing capabilities of its human creator. Ergalics sityilaroadens its epistemology to embrace scientific
explanations of the structure and behavior of computatamuing in nature, whether goal-directed or not.

Viewed in this way, Simon'’s distinction between “naturailesce” and “sciences of the artificial” does
not apply to ergalics. The enduring ergalic theories araded on as-yet undiscovered mathematical struc-
ture, on information-processing constraints on humanghband action, and on the occurrence of compu-
tation in nature itself. Ergalics is thus truly a naturaksae, not separate from the other sciences.

6 Asking Different Questions

A focus on computational tools and on computation itselfislia wide range of relevant research questions.
Figure 3 expands on the relevant phenomena. In this figueearts identify interactions and influences
from one component to another, each suggesting some ol@rgnesearch questions within ergalics. One
can ask, which tasks are desired (arc D) and how does thenfiskrice both the tool and the use of
the tool? (One could even ask, can a tool developed for okebmspplied for a perhaps quite different
task?) Such questions get at the core of a “science of defifgaéman 2004]. A defining characteristic of
computational tools is their capability of creating othemputational tools (arc E). For example, lex and
yacc create parsers, graphical query tools create mudtifdgl queries, and sophisticated hardware and
software development environments produce code fragnoewgsnerate complete applications or hardware
given higher-level specifications. How are the computatidaols we create limited or impacted by those
we have available today? Do tools created by other toolsbéxthie same characteristics as tools created
directly by humans? For example, compiler-generated dslgecnde looks very different from human-
generated assembly code: the former tends to be more bloated is also true of machine-generated
high-level code (many programming language implemematimow compile down to the C programming
language and then invoke gcc), to the point where machinergieed C programs are considered a good
torture test for C compilers. Interestingly, such machieeerated code exhibits locality, in part because
modern architectures make non-locality so punitively egpe that any reasonable programmer would be
careful to pay attention to locality considerations.

CS has also very effectively exploited the generality of patational tools by leveraging abstraction:
higher-level tools exploit the functionality of lower-leMtools. TheLAMP stack(Linux-Apache-MySQL-
Perl) consists of over 10 million lines of code [Neville-N2D08]. This approaches the intellectual com-
plexity of the Saturn V rocket that took man to the moon (wkthee million parts), but it is to date much
less well understood. The LAMP stack is a testament to tHéalbiie and sheer brute force required in the
absence of a scientific foundation. What are the underlyingc®iring principles, general and predictive
theories, and inherent limitations of such complex asseg#dsd of individual tools, each itself a complex
assemblage of sophisticated modules?

The availability of computational tools can change thereay and work and play of its users (arc F) and
creators (arc G); witness the facile, ubiquitous use ofdawtworking and instant messaging by our youth.
Finally, tasks evolve, as new tools become available andeistal needs change, completing the social
and cultural context within which the creator and user dgefarcs H and 1) and thus indirectly impacting
the evolution of tools and tool usage. Each of these arcssdoaivan expansive range of phenomena to be
studied, patterns to be identified, and the scientific tlesdid be uncovered as our understanding deepens.

As Newell, Perlis, and Simon emphasized, the science of atengcience (ergalics) studies compu-
tational tools. Cohen agrees, “Unlike other scientistsp wtudy chemical reactions, processes in cells,
bridges under stress, animals in mazes, and so on, we staayuter programs that perform tasks in en-

Figure 3: Computational tools, elaborated

vironments.” [1995, page 2]. Whether studying a rat or a @og one must examine the behavior of the
organism in context, as illustrated in Figure 4.

“Whether your subject is a rat or a computer program, theaéskience is the same, to provide
theories to answer thrdmasic research questions

e How will a change in the agent’s structure affect its behagigen a task and an environ-
ment?

e How will a change in an agent’s task affect its behavior in dipalar environment?

¢ How will achange in an agent’s environment affect its bebiaoh a particular task?” [Ibid,
pages 3-4]

Note that the “organism” in Figure 4 is either the computaiaool, with the user out of the picture or part
of the environment, or the organism could be considered dke with the computational tool being part of
the environment, depending on which interaction of Figuigder study.

A fourth basic research question is also relevant: How wedsdthe agent perform the original task
within the original environment? This can be viewed as agmotake on Figure 3.

7 Using Different Evaluative Strategies

The evaluative strategies used in other sciences suggestveacan evaluate our theories. Ergalics uses
empirical generalizationin which understanding proceeds along two conceptual miinas, as shown in
Figure 5. As Paul Cohen [1995] has articulated, sciencedireral, and ergalics specifically) progresses
(in the figure, on they-axis) from studies of a particular system to statementsitabomputational tools
in general. So initial work might concern an aspect of a simqgbgram (e.g, a particular database query
optimization algorithm in the context of a particular datad management system), then generalize through
studies of a class of systems (e.g., a stadypssseveral disparate DBMSs), to statements about computa-
tional tools in general (e.g., a theory that holds for rudsdxd optimizers, whether in DBMSs, Al systems,
or compilers). This progression increases the domain dfcglyility, and thus the generality, of a theory.
Science (and ergalics) also progresses (in Figure 5, on-thés) from description of the phenomenon,
to prediction, and eventually through causal explanatigithin an articulated, thoroughly-tested theory.

9

Behavior,

Figure 4: How the structure, task, and environment of anrosga influence its behavior ([Cohen 1995,
page 3])

general

progress in science

specific to
a system

description prediction causal explanati

Figure 5: Empirical generalization ([Cohen 1995, page 5])

Consider the software tools listed in Section 2. Such ptiedi@and causal explanations involve statements
about accessibility, applicability, composability, @emess, extendability, functionality, performancei-rel
ability, robustness, scalability. usability, and utilifipeep understanding involves being able to accurately
predict such aspects of a computational tool and to artew@mpelling causal explanations as to why those
predictions hold up.

While descriptionsof how these tools work are available, there is little abotiet computational tools
that can be scientificallpredictedand very littlecausal explanationCS in its first fifty years has restricted
itself largely to the bottom-left quadrant of this space. pvepose to expand the perspective radically in
both dimensions.

Science proceeds from a combination of induction from ol=kidata and deduction from a stated
theory. The initialtheory construction phasgtarts from observation of phenomena to tentative hypethes
The goal here is to developmaodelof the world (that is, within the explicitly stated domainagplicability)
that can yield predictions that are are tested against datandfrom measurements of that world (see
Figure 6).

The familiar process of debugging code can be viewed as anpgaof model testing. Theeal world

10

Model Fits / Doesn't Fit
Real WOI’l Hypothesis True / False MOdeI
Observation / Reasoning /
Experimentation Calculation
Data : Prediction
Agree / Disagree

Figure 6: Model Testing ([Giere 1979, page 30])

consists of my program and its execution context: the canpihd the operating system and hardware on
which the program runs. | test this program with some spetifiput data, as well as the specified correct
output, which is what | hope the program will produce on thigut data. | discover a flaw when the actual
execution (theobservation/experimentatiprdoes not exactly correspond to the correct output. Through
code inspection, | create myode! the line of code that | feel contains the flaw that producedféult. |
then form gpredictionthroughreasoning or calculationif | change that line of code, the regression test will
now result in the expected output. My test of this hypothesiktell me whether my model is an accurate
reflection of {its or doesn't fit the world: does my predictioagree or disagreewith the data actually
produced when | reran the regression test? | could call tbideia scientific theory, though it is not general
at all (it applies only to this one program), it is not very glicgive (it applies only to this one input data set),
and it has weak explanatory power (it involves only the stitthe program involved in this regression test),
thus placing this model towards the far bottom-left of Fegbr

A scientific theory, its associated model, and predictiomsigating from that model are tested until a
more general theory emerges through insightful, creatideétion. That theory is tested by deducing hy-
potheses, testing those hypotheses, and either confirmimjeating them. Inevitably the theory is refined
and its boundaries sharpened through further cycles ofafigduitesting and inductive refineménas illus-
trated in Figure 7. This evolution of scientific theories wrscas a competition between competing models,
with a range of evaluative tools to judge and select amony tAde works of Ronald Giere [1979] and Paul
Cohen [1995] provide useful tools (methodological and wiwll) to move up the empirical generalization
arrow of Figure 5 and to compare the relative strength of ading theories.

From prediction comes control. Improvement in our comporet tools derives from the predictive
power of our scientific theories. Ultimately, the value taisty of a specific ergalic theory derives from the
extent to which that theory provides engineering oppotiemifor improvement of a class of computational
tools and explains the inherent limitations of that classoofs. For example, Denning’s theory initially
enabled efficient virtual memory systems, at a time when systems were ad hoc and at times inadequate.
His insight allowed us to see how programmers can adjust dipgiroach to take advantage of locality, by,
for example, using new kinds of hardware and software archites. His theory also explained why the
lack of sufficient main memory to hold a process’s workingveetild inevitably result in poor performance.

2It should be acknowledged that this is a simplification; péiiphers of science have argued for decades that this finezess
is much more complex and that theories and questions refletiases and cognitive processes of the researcherss jghaheir
computational tools.

11

Tentative Refined Further Accepted

Theory Theory Refinement Theory
Conceptual
Plane \\
\
Induction Deduction \
from \
Observed Y
Data |
Empirical
Plane cyrrent Current Current Current
Evidence Evidence Evidence Evidence

Figure 7: Theory construction, testing, and refinement fIka008])

8 Interacting with Other Disciplines in Different Ways

To this point CS primarily has offered computational toaisl @omputational thinking to the other sciences,
so that scientists in those domains can advance their owml&dge.

With ergalics, the flow can also go the other way: computegrgists can utilize the insights, method-
ologies, experimental strategies, formalisms, and extedries of other sciences to aid our understanding
of computational tools. Specifically, (i) psychology camtibute directly, through its understanding of the
structures and limitations of cognitive and non-cognitivieking and of the challenging but often insightful
methodology of user studies; (ii) other behavioral anda@tiences can also provide insights into the social
implications of human use of computational tools, such asthe internet is used; (iii) neurology, through
such tools as functional MR, can start to identify physieedin structures that influence the creation and
use of tools; (iv) economics and sociology can provide boitranand macro behavioral clues, such as
how trust in security and privacy mechanisms may be attaimed (v) physics, chemistry, and biology can
provide evidence of computational processes in nature assilge theories and laws about those processes,
which would also govern the behavior of computational tools

The models and theories these other fields have developed gedting at the basic research questions
that Cohen articulated, concerning animals, organizatisystems, and (in ergalics) computational tools. It
is likely that the models will be more similar than differebecause most arise from similar methodological
tools and support the same kinds of inference: predictienggplization, control, and, occasionally, causal
explanation. Ergalics can do what these other sciences dave and are doing: utilize the empirical
generalization of Figure 5 to ask the questions implied lgufé 4 and to follow the general approach of
theory construction, testing [Tichy 1998, Zelkowitz & Wadk 1997], and refinement of Figure 7.

The fact that ergalics utilizes a common scientific termoggl with shared semantics and a common
research methodology can have another real benefit. PetercLeently chair of Carnegie Mellon Uni-
versity’s Department of Computer Science, asks, why isat tthere isn't much computing research in
the major core-science publications” [Lee 2008]. One fdsgieason is that CS does not as yet utilize the
methodology and terminology of science, nor does it ask tlestipns of science, nor does it seek scientific
theories. When CS participates in the market of endurirmiyrtelogy-independent scientific theories (in this
case, of computational tools), computing research mayrbecunore relevant for core-science publications.

12

Mathematic

Provides
Calculational
Framework

Provides
Formalisms
for

Provide
Usage

Context for Science

Provides
Fundamental

Provides
Provides Justificatio . .
Challenges of Value To Englneerlng
For

Figure 8: The interrelationship of the three perspectives

9 A New Direction

Ergalics seeks insights that are not based on details ofitherlying technology, but rather continue to hold
as technology inevitably and rapidly changes. It also seeklerstanding of limitations on the construction
and use of computational tools imposed by the nature of ctatipn and by the specifics of human cogni-
tion. Ergalics provides an opportunity to apply new apphesc new methodological and analytical tools,
and new forms of reasoning to the fundamental problems ontifiy CS and society in general. And it
seeks to do so by bringing science into CS.

Science provides a specific methodology which has beennegtyeproductive and beneficial in other
sciences. The development of scientific theories in CS caduyge new insights and better outcomes than
restricting ourselves to the mathematical and engineguargpectives. Denning’s recent assessment is
hopeful, but as yet unrealized: “The science paradigm hadeen part of the mainstream perception of
computer science. But soon it will be” [Denning 2005a, pate 3

As Jeannette Wing stated in a talk [Wing 2008] at Stanford ay 211, 2008, the fundamental question
of the Network Science and Engineering (NetSE) initiatisg“ls there asciencefor understanding the
complexity of our networks such that we camgineerthem to have predictable behavior?” (emphases in the
original). Ergalics generalizes this challengectimputational tooland tocomputationitself, manifesting
scientific theories across CS disciplines and enablingrigaeering advances enabled by such theories. To
achieve this result, we need to restructure the educatadkcholarly ethos of CS to also encourage and
enable the scientific perspective.

Bill Wulf has observed [1995] that “Young as we [the disaigiof CS] are, | think we really don't
have a choice to be science or engineering; we are sciencergyideering, and something more, too.”
Figure 8 shows how the three perspectives, with scienceeimilddle, symbiotically relate. Mathematics
is often useful in providing formalisms to succinctly exgseheories (thus, aiding parsimony) and fit them
in with other models of nature (generality). It also givesausay to think about deep structure, and thus
helps us to expose that structure. Science can be usefufjteeening by explicating the underlying causal
mechanisms (prediction and control). Similarly, engiivegreveals behavior (phenomena) that science can
use to construct new theories, and science provides needsvicformalisms and theorems.

As an example from aeronautics, the mathematics perspeltis developed non-linear differential
equations, in particular the Navier-Stokes equationschvicen be used in the momentum equations for
fluids such as air. The scientific perspective has used suctafisms to express thermodynamic laws, such

13

as the perfect gas equation of state, relating pressursitgeand temperature. This physical theory allows
one to accurately predict the viscous flow of a fluid aroundi@eat and the impact of changing temperature
and pressure. The engineering perspective uses, for exathpl Reynolds number, a notion grounded in
these scientific laws, to scale data from wind tunnel expemision wing shapes to their real-life counter-
parts.

This structure can be applied to CS, with concrete mathemfiraham, Knuth, and Patashnik 1994]
and complexity theory to the left, ergalics in the cented arost of conventional CS on the right. (In fact,
an important objective of this essay has been to charaeteractly what that center component consists
of, what a science of computer science would entail, in tesfritss objects of study, its methodology, and
its emerging understanding.) An increased emphasis ofieygéll bring balance to this interrelationship,
providing a solid foundation upon which to make great stidethe engineering of computational tools,
thereby dramatically increasing their performance, etficand reliability.

10 Benefits

How might the articulation of scientific theories of compigaal tools benefit society? This question can
be approached in several ways.

First, looking back over the last three hundred years, itgarchat many if not most of the technologies
that emerged werprecededby a deep understanding afforded by scientific theories asttiematical for-
malisms and theorems. Consider the $10 GPS chip in all cefiggh This advance required Newton’s Laws
of Motion and the mathematics of celestial navigation te@elthe GPS satellites in geosynchronous orbit,
Bohr’s Atomic Theory to enable the Cesium atomic clocks aséhsatellites, Electromagnetic Theory and
Maxwell's equations to enable the efficient transmissioth l@eeption of weak radio signals, and Quantum
Mechanics and Shrodinger’s equations to enable the emtistn of tiny switching transistors within the
GPS chip. A similar analysis for other engineering breakilghs over the last few centuries emphasizes
that the discovery and elaboration of a scientific theory ismdssociated mathematical underpinning and
deep understanding oft@mabledthe engineering advance.

Second, an historical analysis of CS over its fifty-yeattilifie also shows the critical role of scientific
theories. In the mid-1960’'s, operating systems were at ssooads. Companies “were reporting their
systems were susceptible to a new, unexplained, catagtrpptblem they called thrashing. Thrashing
seemed to have nothing to do with the choice of replacemditypdt manifested as a sudden collapse of
throughput as the multi-programming level rose” [Dennif§2zb, page 21]. The ergalic theory of locality
and its understanding of the central role that the workingpssyed was followed by appropriate page
replacement and job scheduling algorithms that solvedctitisstrophic problem.

However, the true benefits of a science of computation, dfet@rticulated ergalic theories, are im-
possible to predict, because scientific theories, by viduthe deep understanding they encapsulate, are
transformational and disruptive. Given the well-estdidis connection, in some cases causal, from scien-
tific theory to engineering innovation, the discovery ofadigtheories may be a necessary prerequisite for
some innovations. And it is probable that the solutions ofynaf the technological problems related to
our use of computational tools will require engineeringowvattions that are predicated on ergalic theories
still to be articulated. In consideration of the advancesfdrmation technology that have resulted from
the interplay of two primary perspectives, mathematics emgineering, might the incorporation oftzird
perspective accelerate innovation, energize and intisgugents, and increase public support?

14

11 An Opportunity

People use computational tools. People also construat thets. Computational tool construction and use
is one of the ways that humans are unique. The tools that leipraduce and the ways that they use such
tools are profoundly affected by the way that humans thinkimately, understanding computational tools
enables us to build better tools, and helps us to understaatimakes us human.

Computation also appears to be a fundamental process irendtso, the scientific perspective affords
a way to better understand our world.

Unlike established sciences, where many if not most of tmeldmental theories have already been
discovered [Horgan 1996, Horgan 2004] (though much eldiooraemains), the theories of ergalics are
still out there, just waiting to be uncovered. Who will diseo the CS equivalents of Einstein’s theory of
relativity, of Mendel's theory of heredity, of Darwin’s they of evolution, of Festinger’s theory of cognitive
dissonance, of Pauling’s theory of chemical reactions?

12 Acknowledgments

| offer my sincere thanks to those who have commented onquewersions of this essay, bringing rele-
vant connections and viewpoints: Greg Andrews, Kobus Bdrr@arole Beal, Merrie Brucks, Faiz Currim,
Sabah Currim, Paul Cohen, Saumya Debray, Peter Dennirgy, Petvney, lan Fasel, John Hartman, Laura
Haas, John Kececioglu, Leonard Kleinrock, Lester McCaraytGn Morrison, Frank Olken, Ben Shnei-
derman, Maria Zemankova, and Beichuan Zhang. | especipflyeaiate the hours of discussion on these
topics that many of these people each spent with me.

References

[Achinstein 1971] P. Achinsteirl,aw and Explanation, Clarendon Press, Oxford, 1971.
[Aicken 1984] F. Aicken,The Nature of Science Heinemann Educational Books, London, 1984.

[Chalmers 1999] A. F. Chalmergyhat is this thing called Science?Third Edition, Hackett Publishing
Company, 1999.

[Cohen 1995] P. Coher;mpirical Methods for Artificial Intelligence , MIT Press, 1995.
[Davies 1973] J. T. Davie§,he Scientific Approach, Academic Press, New York, 1973.

[Denning 1995] P. J. Denning, “Can There Be a Science of mé&tion?”, ACM Computing Surveys
27(1):23-25, March 1995.

[Denning 2005a] P. J. Denning, “Is Computer Science SciBgh€@ACM48(4):27-31, April 2005.
[Denning 2005b] P. J. Denning, “The Locality Principl€ACM48(7):19-24, July 2005.
[Denning 2007] P. J. Denning, “Computing is a Natural Scih€CACM50(7):13-18, July 2007.

[Freeman 2004] P. Freeman and D. Hart, “A Science of Desigrs@dtware-Intensive SystemsCACM
47(8):19-21, August 2004.

[Giere 1979] R. N. GiereUnderstanding Scientific Reasoning fourth edition, Harcourt Brace, Fort
Worth, TX, 1979.

15

[Graham, Knuth, and Patashnik 1994] R. L. Graham, D. E. Knatid O. PatashnikConcrete Mathe-
matics: A Foundation for Computer Science second edition, Addison-Wesley, Reading,
MA, 1994.

[Horgan 1996] J. HorgarT,he End of ScienceHelix Books, Addison-Wesley, Reading, MA, 1996.
[Horgan 2004] J. Horgan, “The End of Science RevisitédEE Compute7(1):37—43, January 2004.

[Kohli 2008] A. K. Kohli, “Theory Construction in Marketing talk at the University of Arizona,
April 2008.

[Kuhn 1996] T. Kuhn,The Structure of Scientific Revolutions University of Chicago Press, 1996.

[Lee 2008] P. Lee, “Science and Nature: Where's the ComgutResearch?” Computing
Community Blog, September 12, 2008ft p: // www. ccchbl og. or g/ 2008/ 09/ 12/
sci ence- and- nat ur e- wher es-t he- conput i ng- resear ch/ , viewed September
18, 2008.

[Neville-Neil 2008] G. V. Neville-Neil, “Code Spelunkingd&lux,” CACM51(10):36—41, October 2008.

[Newell, Perlis, and Simon 1967] A. Newell, A. J. Perlis, a@idA. Simon, “Computer Science,” letter in
Sciencel57(3795):1373-1374, September 1967.

[Newell & Simon 1976] A. Newell and H. Simon, “Computer Saiernas Empirical Inquiry: Symbols and
Search,"CACM19(3):113-126, March 1976.

[Popper 1969] K. R. Poppe€onjectures and Refutations Routledge and Kegan Paul, London, 1969.
[Simon 1996] H. A. SimonSciences of the Artificial Third Edition, MIT Press, Boston, MA, 1996.

[Tichy 1998] W. F. Tichy, “Should Computer Scientists Expggnt More?,"IEEE Compute31(5):32-40,
May 1998.

[Turing 1937] A. M. Turing, “On Computable Numbers, with ampglication to the Entscheidungsprob-
lem,” Proceedings of the London Mathematical Socgy2(1):230-265, 1937.

[Vessey 1991] I. Vessey, “Cognitive Fit: A Theory-based Bmsis of Graphs vs. Tables Literaturdleci-
sion Science2(2):219-240, March 1991.

[Wing 2008] J. Wing, “Network Science and Engineering: (fall a Research Agenda,” talk at Stan-
ford University, May 21, 2008htt p: // www. cr a. or g/ ccc/ docs/ st anf or d. pdf,
viewed September 12, 2008.

[Wulf 1995] W. A. Wulf, “Are We Scientists or Engineers?ACM Computing Survey27(1):55-57,
March 1995.

[Zelkowitz & Wallace 1997] M. V. Zelkowitz and D. R. Wallac&:xperimental Validation in software en-
gineering,”Information and Software Technolo§®:735-743, 1997.

[Zipf 1932] G. K. Zipf, Selected Studies of the Principle of Relative Frequency indanguage Harvard
University Press, 1932.

16

