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Abstract

If computer science is to truly become a “science,” as Newell, Perlis, and Simon originally conceived,
then it must integrate three equally ascendant perspectives: mathematics, science, and engineering. The
scientific perspective can help us tounderstand computational toolsandcomputationitself, through the
articulation ofenduring, technology-independentprinciples that uncover new approaches and identify
technology-independent limitations. This reorientationwill yield an understanding of the tooldevelop-
ersand the toolusersand will thus enable refinements and new tools that are more closely aligned with
the innate abilities and limitations of those developers and users. Incorporating the scientific perspec-
tive, to augment the mathematical and engineering perspectives, necessitates that the discipline study
different phenomena, seek a different understanding of computation, ask different questions, use differ-
ent evaluative strategies, and interact in different ways with other disciplines. Doing so will add wonder,
engagement, and excitement to our discipline.

1 Introduction

Three quite distinct perspectives—mathematics, science,and engineering—have long been associated with
the discipline of computer science [Denning 2005a]. Mathematics appears in computer science (CS) through
formalism, theories, and algorithms, which are ultimatelymathematical objects that can be then expressed
as computer programs and conversely. Engineering appears through our concern with making things better,
faster, smaller, and cheaper. Science may be defined as developing general, predictive theories that describe
and explain observed phenomena and evaluating these theories [Aicken 1984, Chalmers 1999]. Such theo-
ries include a statement of “why” and are amenable to predictions on heretofore unexamined phenomena,
that can be subsequently tested on those phenomena [Davies 1973].

In an influential letter in the journalScience, Nobel Prize winner Herbert Simon and his colleagues
Alan Newell and Alan Perlis defined the nascent discipline ofCS as a “science of the artificial,” strongly
asserting that “the computer is not just an instrument but a phenomenon as well, requiring description and
explanation” [Newell, Perlis, and Simon 1967, page 1374]. Simon furthered that line of reasoning in his
book,Sciences of the Artificial, whose third edition was published in 1996.

Simon’s promise of a science of computational phenomena hasnot yet been realized by this fortieth
anniversary of his compelling argument. Since its foundingin the late 1950’s, CS has uncovered deep
mathematical truths and has constructed beautifully engineered systems that have ushered in the “age of
information technology.” However, there is as yet little understanding of these highly complex systems, what
commonalities they share, how they can be used to construct new systems, why they interact in the ways they
do with their environment, or what inherent limitations constrain them. As an example, while solid-state
physics has provided a detailed understanding of VLSI, enabling design rules that allow the construction
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of highly complex processors, there is no similar understanding of the efficacy of programming language
constructs and paradigms that would allow programming language designers to predict the efficiency of code
written in their new languages. Nor do we have a detailed understanding of the failure modes of software
components and systems assembled from those components, anunderstanding that would allow us to predict
failure rates and to engineer systems to predictably decrease those rates.

The attainments of CS are largely the result of three contributing factors: the exponential growth of
computing, storage, and communication capacity through Moore’s Law; the brilliance of insightful design-
ers; and the legions of programmers and testers that make these complex systems work by dint of sheer
effort. Unfortunately, CS is now constrained in all three factors: the complexity of individual processors
has leveled off, the systems are at the very edge of comprehension by even the most skilled architects, and
the programming teams required for large systems now numberin the thousands. Development “by hook or
by crook” is simply not scalable, nor does it result in optimally effective systems. Specifically, unlike other
engineering disciplines that have solid scientific foundations, CS currently has no way of knowing when a
needed improvement can be attained through just pushing a technology harder, or whether a new technology
is needed. Through a deeper understanding of computationaltools and computation itself, ouir discipline
can produce new tools that are more robust, more effective, and more closely aligned with the innate abilities
and limitations of the developers and users.

CS has not yet achieved the structure and understanding thatother sciences aspire to and to which the
public ascribes the ascendancy of science. Consider as justone example how drugs now can be designed
based on their desired shape, which was enabled by deep understanding of protein folding, chemical bond-
ing, and biological pathways. This understanding is due primarily to the adoption of scientific reasoning.
To achieve such understanding of computational tools and computation, the mathematical and engineering
perspectives, while critical, are not sufficient. Rather, what is needed is the application of a radically differ-
ent perspective, that of the scientific method, to enable andtest scientific theories of computational artifacts.
(We will shortly examine one such scientific theory, Denning’s Theory of Locality.) Adopting such a per-
spective within CS, to augment the existing, vital perspectives of mathematics and engineering, requires that
we study different phenomena, seek a different understanding of computation, ask different questions, use
different evaluative strategies, and interact in different ways with other disciplines.

2 Studying Different Phenomena

CS has been prolific and influential in creating computational tools that allow human intelligence to be
amplified. Computational tools, defined broadly, include formalisms (e.g, order notation), conceptual de-
vices (e.g., UML), algorithms, languages (e.g., Java, SQL), software systems, hardware (e.g., RISC), and
computational infrastructure (e.g., the internet).

The central premise of this essay is the following.

The focus of the discipline of CS over its first fifty years has been to build larger and larger
assemblages of algorithms, data structures, and individual programs into massive, complex,
and highly-useful systems. These computational artifactsare inherently deserving of study.
These tools are sufficiently stable that meaningful statements about them are possible. Studying
the tools themselves, their behavior, their structure, andhow users interact with them, as well
as studying computation itself, will yield insights that will enable nascent scientific theories that
can serve to improve the tools in fundamental ways, to explain fundamental limitations, and to
understand the role of computation in nature.
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This is admittedly an audacious claim. Is it just wishful thinking? The purpose of this essay is to
characterize a science of computation and to explain how it can transform CS. Our argument has the fol-
lowing form. Science provides a different understanding than mathematics or engineering: that of general,
testable, predictable scientific theories. It is these theories that have enabled the great scientific advances
of the last century. There are several fundamental reasons why theories of computation can be as enduring
and general as the theories concerning other aspects of nature as articulated by other sciences. A science
of computational tools and of computation generally could achieve advances of similar import by utilizing
the methodology that other sciences use to generate and testtheir theories, specifically, that of empirical
generalization and model testing. Both the history of natural science and the history of CS provide strong
predictors of disruptive innovations that could be enabledby a vigorous discipline of science within CS.

To understand the potential offered by the scientific perspective within CS, one must first appreciate
the specific goals and methodologies that scientists (but not yet computer scientists) adopt as absolutely
fundamental.

3 Seeking A Different Understanding

CS has been largely dominated by the engineering perspective. As a result of brilliant engineering, our
discipline has generated a good number of industries, each revolving around stable, long-standing, com-
plex, prevalently used computational tools. The engineering perspective can be characterized as seeking
improvement, such as faster, more functional, more reliable.

CS has also successfully utilized the mathematical perspective. Complexity theory, asymptotic analysis,
serializability theory, and other deep results have informed the study of computation in general and of the
creation of software and hardware artifacts. The mathematical perspective can be characterized as seeking
elegant formal structures and provable theorems within those structures.

The scientific perspective seeks a different kind of understanding: to explain phenomena encountered
in nature. These explanations take the form of falsifiablescientific theories[Popper 1969] andscientific
laws [Achinstein 1971]. The challenge to a scientist of any ilk isto reduce complex phenomena to simpler,
measurable phenomena in such a way that the scientific community agrees that the essences of the original
phenomena are captured. For example, Newton articulated the concept of “force” to explain the motion of
the planets, John Nash provided an interpretation of human behavior as game playing, and E. O. Wilson and
others dramatically changed ethology and ecology by introducing the ideas of energy budget and optimal
foraging strategies.

The term “theory” in CS is a synonym for “formalism” or “concrete mathematics.” When someone
in CS does “theory,” they are using the mathematical perspective. In logic, formal systems, and theorem
proving, a “theory” is a purely formal object: a maximal set of assertions (strings) that can be deduced from
axioms via inference rules. However, the term “theory” means something quite different in science.

Science seeks general, predictive theories that describe and explain observed phenomena. Such theories
have four primary attributes.

• Parsimony:Each explains a variety of phenomena with a short, coherent explanation (Occam’s razor),
thereby reducing the number of independent phenomena.

• Generality:Each theory explains a wide range of phenomena.

• Prediction: Each anticipates future events, often to a high degree of accuracy.

• Explanatory power:Each provides a compelling underlying mechanism.
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Figure 1: Locality-sequence behavior during program execution ([Denning 2005b, page 23])

Successful theories are also highly useful in engineering,because they can be employed to design mecha-
nisms that ensure positive effects or avoid negative effects.

To illustrate these benefits, consider one of the few extant scientific theories of computation, Peter Den-
ning’s Theory of Locality [Denning 2005b]. It is useful to examine this theory in order to understand specif-
ically how a scientific theory is radically different from the theorems of the mathematical perspective and
the architectures and design rules of the engineering perspective. The locality theory also illustrates why it
is critical to take the creator and user into account.

The locality theory arose from a study of the cost of managingpage transfers between main memory and
a much slower disk drive. “Because a bad replacement algorithm could cost a million dollars of lost machine
time over the life of a system,” this was a critical problem tosolve. Denning noticed when measuring the
relevant phenomenon, the actual page usage of programs, that there were “many long phases with relatively
small locality sets” (see Figure 1); “each program had its own distinctive pattern, like a voiceprint.” He found
that nothing about the structure of memory or the processor executing instructions required or forced such
locality sets. Instead, it was a clear, repeated pattern across many systems, users, and programs. Denning
abstracted this observed behavior as follows. DefineD(x, t) as thedistancefrom a processor to an objectx

at timet. If D(x, t) ≤ T for a specified distance thresholdT , thenx is defined to be in thelocality setat
time t. Locality theory states that ifx is in the locality set at timet, then it is likely to be in the locality set
at timet + δ, for smallδ, and so should not be removed from the cache.

The locality principle is inherently predictive and has been tested many, many times, for many distance
functions. It is general: This theory applies to computational systems of all kinds: “in virtual memory to
organize caches for address translation and to design the replacement algorithms, ... in buffers between com-
puters and networks, ... in web browsers to hold recent web pages, ... in spread spectrum video streaming
that bypasses network congestion” [Ibid, pages 23–24].

Where the locality principle becomes a truly scientific theory is in its explanatory power. Specifically,
this theory identifies the source of the observed locality. One might think that perhaps this observed phe-
nomenon of a locality set comes about because of the von Neumann architecture. But locality was originally
observed not at the level of the instruction set, but betweenthe main memory and the disk. And as just men-
tioned, locality has been observed in contexts unrelated tothe von Neumann architecture. Instead, locality
appears to originate in the peculiar way in which humans organize information:1 “The mind focuses on

1This explanation by Denning of how locality works is reminiscent in some ways of Turing’s explanation of his model of
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a small part of the sensory field and can work most quickly on the objects of its attention. People gather
the most useful objects close around them to minimize the time and work of using them.” Psychology has
described this process in quite precise terms and with compelling theories of its own: the persistent steer-
ing of attention, the chunking and limited size of short-term memory, the serial processing of certain kinds
of cognition. This realization, this scientific theory of locality, thus holds in many disparate contexts, and
has enabled specific engineering advances, including register caching, virtual memory algorithms based on
efficiently computing the working set, and buffer strategies within DBMSes and network routers, thereby
increasing the performance, scalability, and reliabilityof many classes of computational tools.

Another theory of computational tools is Vessey’s Theory ofCognitive Fit, which states that “perfor-
mance on a task will be enhanced when there is a cognitive fit (match) between the information emphasized
in the representation type and that required by the task type” [Vessey 1991]. Both Locality Theory and
Theory of Cognitive Fit are true scientific theories becausethey are parsimonious, general, predictive, and
explanatory.

An important component of any scientific theory is a delineation of its domain of applicability, which
defines the conditions under which nature (or computationaltools) behave in a law-like way. Newtonian
mechanics applies throughout the universe, but not at speeds approaching that of light nor at very small
dimensions. As Thomas Kuhn [1996] emphasized, most scientists work within a paradigm with established
theories. Much of what a scientist typically does relates toascertaining the precise domain of a theory. But
within that explicitly-stated domain, the theory should hold, and tests of that theory over phenomena with
that domain should not fail. For scientific theories of computational tools, the domain might be a class of
tool, e.g., a database management system (DBMS). Or the domain might be restricted, say to an attribute
of a tool, e.g., to a DBMS utilizing cost-based query optimization. Or the theory might be more general,
with a domain covering multiple classes of tools, as with thetheory of cognitive fit. As another example,
the established fact that caching works so well (whether in main memory, disks, networks, internet) is a
testament that computational tools quite reliably exhibitlocality. That said, the domain of applicability for
locality does not include programs constructed explicitlyto avoid locality.

4 Why Might Such Theories Hold?

Science desires theories thatendure, i.e., that are not tied to a set of specific circumstances or to a particular
time. Suppose that in studying phenomena related to a computational tool, one develops a theory that is rea-
sonably general and parsimonious, that predicts accurately the observed phenomena, and has a compelling
explanation for those phenomena. Why might such a theory be true? In particular, why might predictions
when the theory is being tested in new ways in the future stillbe borne out?

The endurance of a theory of computational tools might arisein at least three somewhat different ways.
First, it might be that the predictive power derives from some deep mathematical theorem that has yet to be
proven or even stated. For example, perhaps Zipf’s law [1932] (that for many tanked data, the relative fre-
quency of thenth-ranked item is given by the Zeta distribution) will someday be shown to be a consequence
of a yet-to-be stated mathematical theorem with an associated proof. The undiscovered theorem is what has
caused predictions of this theory to hold. Specifically, thefailure of a test of an hypothesis of such a theory
might require an internal mathematical contradiction. There are possibly phenomena of computational tools

“machine,” in which he appealed to how computing was done by (human) computers, an explanation which implicitly includes a
notion of locality. “Computing is normally done by writing certain symbols on paper. We may suppose this paper is dividedinto
squares like a child’s arithmetic book. ... Besides ... changes of symbols, the ... operations must include changes of distribution of
observed squares. The new observed squares must be immediately recognisable by the computer [a human computer—ed.]. I think
it is reasonable to suppose that they can only be squares whose distance ... does not exceed a certain fixed amount.” [Turing 1937,
pages 249–50]
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that can be predicted and generalized into theories that aretrue because of yet-to-be-conceived mathematical
truths.

A second, potent source of endurance and generality of scientific theories of computational tools is the
very specific psychological abilities and limitations of humans. As emphasized above, locality in programs
arises from “the peculiar way in which humans organize information.... The locality principle flows from
human cognitive and coordination behavior...These behaviors are transferred into the computational systems
we design” [Denning 2005b, page 24]. In Codd’s Relational Theory, the relational data model (data as
tables) and its associated tuple relational calculus derived in part from the syntactic structure of natural
language queries. Indeed, the notion of relation, under thename of “predicate” goes back to the Greeks’
attempts to identify the structure of logical arguments in order to lay down the rules (of inference) for
correct reasoning. They realized, as logic does today, thatthere is something fundamental in the way that
humans organize thought using predicates (relations) and their manipulation. The critical fixed point of all
computational tools that we know about is that they were created and are used byhomo sapiens.

A third source of endurance and generality of theories of computational tools is that of nature itself,
independent of the role of humans in the construction and useof computational tools. Denning has ar-
gued that “computation and information processes have beendiscovered in the deep structures of many
fields” [Denning 2007, page 13]; he gives as examples computation via DNA expression and computation
via combining quantum particle interactions through quantum electrodynamics (QED). Just as there are laws
of physics and chemistry and biology that govern nature, perhaps there are laws that govern computation in
nature. Then computational tools would be subject to those laws and theories. Perhaps Newell and Simon’s
Physical Symbol System Hypothesis (“A physical symbol system has the necessary and sufficient means
for general intelligent action”) [Newell & Simon 1976] derives from such natural processes. Perhaps the
observed preference by humans for locality also derives from natural processes of computation, in that there
was no other way for us to think. (Thatwould be an amazing discovery!) Or perhaps there are computational
models in nature that are radically different from how humans process information.

5 Ergalics

The phrase “natural science of computational tools as a perspective of computer science” is verbose and
awkward. The term “science of computer science” is shorter but still awkward. Hence, we use the term
“ergalics” for this new science. It derives from the Greek word ergaleion (ǫργαλǫιων), translated by both
Woodhouse’sEnglish Greek Dictionaryand Liddell and Scott’sA Greek-English Lexiconas “tool” or “in-
strument.” This etymology is related to the Greek word ergon(ǫργων), meaning “work,” “job,” or “task,”
and is the basis of the English words “ergonomics,” an applied science of equipment design, “ergometer,”
an apparatus for measuring the work performed by a group of muscles, and the “erg,” a CGS unit of work.
These other terms emphasize the physical body; ergalics emphasizes computation. Some advantages of
this term are it is a new word (Google it) and thus not overloaded with existing meaning, it is short, it is
consistent with other scientific terminology, and it doesn’t have negative connotations.

The goal of ergalics is to express and test scientific theories of computational tools and of computa-
tion itself and thus to uncover general theories and laws that govern the behavior of these tools in various
contexts. The challenge now before the CS discipline is to broaden its reliance upon the mathematical and
engineering perspectives and to embrace the scientific perspective.

The class of computational tools is broad and includes formalisms, conceptual devices, algorithms,
languages, software systems, hardware, and computationalinfrastructure. Expanding on one of these cat-
egories, software systems include operating systems (e.g., Linux, Windows), database management sys-
tems (e.g., MySQL, Oracle), compilers and software development environments (e.g., Eclipse, gcc, Visual
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Studio), GUIs (e.g., Java Swing, Windows), internet servers (e.g., Apache, Internet Information Server),
browsers (e.g., Internet Explorer, Mozilla Firefox), and network protocols (e.g., DNS, TCP/IP). Note that in
each case there exist both open source systems and proprietary systems, that each system involves a highly
functional and quite complex interface, and that each system has been around for at least a decade. Also note
that each kind of software system is associated with an annual one billion US$ industry and that each each
of the categories can be enumerated and expanded, for CS has produced many significant, long-standing,
mature computational tools.

Figure 2 illustrates the range of phenomena to be investigated within ergalics and for which scientific
theories can be advanced and tested. A computational tool isfirst created (arc A) by a person or team of
people given an identified task. This tool is then used by a person (arc B) to accomplish that task (arc
C). Phenomena can be associated with each arc. Most CS research considers how to create and compose
tools that accomplish a specific task (arc C). Such research considers such aspects as functionality (what
does the tool actually do?), performance (what resources, e.g., CPU execution time, disk and network band-
width, cache, main memory, disk space, does the tool require?), and reliability (to what extent does the tool
accommodate failures of the hardware and software components it utilizes?). For example, the problem
Denning first considered in his doctoral dissertation that ultimately lead to his Theory of Locality was the
performance implications of disk reads, specifically the phenomenon of thrashing.

The study of an individual tool, while potentially quite insightful, is however only a small portion of
the phenomena that can be investigated and the insights thatare possible. One could study how that tool
was influenced by human traits. (We argued earlier that locality theory ultimately concerned exactly that.)
Viewed another way, a computational tool is a means to bridgethe computation gapbetween the abilities
of the user and the requirements of the task. Hence, one couldstudy how tools are actually used and their
effectiveness in order to discover enduring predictions and theories about such use. (It is important to
recognize that some systems may be sufficientlyad hocthat there may not be interesting scientific theories
that can be applied to them. However, for established, long-lived computational tools such as those listed
above, it is likely that there is much to be gleaned from careful scientific analysis.)

A

Tool
Computational

Creator

User
B

Task
C

Figure 2: Computational tools

How does ergalics relate to Simon’s “sciences of the artificial” [Simon 1996]? In terms ofmethodology
andgoals, the two are identical: both use the methodology of empirical science and have as the ultimate
goal the articulation and testing of scientific theories. Interms ofsubject of study, Simon’s sciences target
“artifacts,” which are things that humans construct to accomplish a task. The subject of study of ergalics
is computation in natureand computational tools; the latter are artifacts but the former is not. We are in
complete agreement with Simon and with Peter Denning [1995,2005a, 2007], Peter Freeman and David
Hart [2004], Walter Tichy [1998], and others who argue that legitimate science can extend beyond what
people traditionally think of as ”natural” science, to include the scientific study of artifacts as well. It is in
terms ofepistemologythat the two differ the most. For Simon, the goal or task of an artifact is central; of
primary interest is how the artifact accomplishes (or not) the goal. Ergalics concerns both the interaction of
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the artifact and its goal as well as the artifact itself. For example, the locality exhibited by programs occurs
independently of the design goal of the program; rather, locality arises through the innate information pro-
cessing capabilities of its human creator. Ergalics similarly broadens its epistemology to embrace scientific
explanations of the structure and behavior of computation occurring in nature, whether goal-directed or not.

Viewed in this way, Simon’s distinction between “natural science” and “sciences of the artificial” does
not apply to ergalics. The enduring ergalic theories are founded on as-yet undiscovered mathematical struc-
ture, on information-processing constraints on human thought and action, and on the occurrence of compu-
tation in nature itself. Ergalics is thus truly a natural science, not separate from the other sciences.

6 Asking Different Questions

A focus on computational tools and on computation itself elicits a wide range of relevant research questions.
Figure 3 expands on the relevant phenomena. In this figure, the arcs identify interactions and influences
from one component to another, each suggesting some overarching research questions within ergalics. One
can ask, which tasks are desired (arc D) and how does the task influence both the tool and the use of
the tool? (One could even ask, can a tool developed for one task be applied for a perhaps quite different
task?) Such questions get at the core of a “science of design”[Freeman 2004]. A defining characteristic of
computational tools is their capability of creating other computational tools (arc E). For example, lex and
yacc create parsers, graphical query tools create multipage SQL queries, and sophisticated hardware and
software development environments produce code fragmentsor generate complete applications or hardware
given higher-level specifications. How are the computational tools we create limited or impacted by those
we have available today? Do tools created by other tools exhibit the same characteristics as tools created
directly by humans? For example, compiler-generated assembly code looks very different from human-
generated assembly code: the former tends to be more bloated. This is also true of machine-generated
high-level code (many programming language implementations now compile down to the C programming
language and then invoke gcc), to the point where machine-generated C programs are considered a good
torture test for C compilers. Interestingly, such machine-generated code exhibits locality, in part because
modern architectures make non-locality so punitively expensive that any reasonable programmer would be
careful to pay attention to locality considerations.

CS has also very effectively exploited the generality of computational tools by leveraging abstraction:
higher-level tools exploit the functionality of lower-level tools. TheLAMP stack(Linux-Apache-MySQL-
Perl) consists of over 10 million lines of code [Neville-Neil 2008]. This approaches the intellectual com-
plexity of the Saturn V rocket that took man to the moon (with three million parts), but it is to date much
less well understood. The LAMP stack is a testament to the brilliance and sheer brute force required in the
absence of a scientific foundation. What are the underlying structuring principles, general and predictive
theories, and inherent limitations of such complex assemblages of individual tools, each itself a complex
assemblage of sophisticated modules?

The availability of computational tools can change the learning and work and play of its users (arc F) and
creators (arc G); witness the facile, ubiquitous use of social networking and instant messaging by our youth.
Finally, tasks evolve, as new tools become available and as societal needs change, completing the social
and cultural context within which the creator and user operate (arcs H and I) and thus indirectly impacting
the evolution of tools and tool usage. Each of these arcs draws out an expansive range of phenomena to be
studied, patterns to be identified, and the scientific theories to be uncovered as our understanding deepens.

As Newell, Perlis, and Simon emphasized, the science of computer science (ergalics) studies compu-
tational tools. Cohen agrees, “Unlike other scientists, who study chemical reactions, processes in cells,
bridges under stress, animals in mazes, and so on, we study computer programs that perform tasks in en-
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Figure 3: Computational tools, elaborated

vironments.” [1995, page 2]. Whether studying a rat or a program, one must examine the behavior of the
organism in context, as illustrated in Figure 4.

“Whether your subject is a rat or a computer program, the taskof science is the same, to provide
theories to answer threebasic research questions:

• How will a change in the agent’s structure affect its behavior given a task and an environ-
ment?

• How will a change in an agent’s task affect its behavior in a particular environment?

• How will a change in an agent’s environment affect its behavior on a particular task?” [Ibid,
pages 3–4]

Note that the “organism” in Figure 4 is either the computational tool, with the user out of the picture or part
of the environment, or the organism could be considered the user, with the computational tool being part of
the environment, depending on which interaction of Figure 3is under study.

A fourth basic research question is also relevant: How well does the agent perform the original task
within the original environment? This can be viewed as another take on Figure 3.

7 Using Different Evaluative Strategies

The evaluative strategies used in other sciences suggest how we can evaluate our theories. Ergalics uses
empirical generalization, in which understanding proceeds along two conceptual dimensions, as shown in
Figure 5. As Paul Cohen [1995] has articulated, science (in general, and ergalics specifically) progresses
(in the figure, on they-axis) from studies of a particular system to statements about computational tools
in general. So initial work might concern an aspect of a single program (e.g, a particular database query
optimization algorithm in the context of a particular database management system), then generalize through
studies of a class of systems (e.g., a studyacrossseveral disparate DBMSs), to statements about computa-
tional tools in general (e.g., a theory that holds for rule-based optimizers, whether in DBMSs, AI systems,
or compilers). This progression increases the domain of applicability, and thus the generality, of a theory.

Science (and ergalics) also progresses (in Figure 5, on thex-axis) from description of the phenomenon,
to prediction, and eventually through causal explanation,within an articulated, thoroughly-tested theory.
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Environment

Behavior

TaskOrganism

Figure 4: How the structure, task, and environment of an organism influence its behavior ([Cohen 1995,
page 3])

progress in science

description prediction causal explanation

general

specific to
a system

Figure 5: Empirical generalization ([Cohen 1995, page 5])

Consider the software tools listed in Section 2. Such prediction and causal explanations involve statements
about accessibility, applicability, composability, correctness, extendability, functionality, performance, reli-
ability, robustness, scalability. usability, and utility. Deep understanding involves being able to accurately
predict such aspects of a computational tool and to articulate compelling causal explanations as to why those
predictions hold up.

While descriptionsof how these tools work are available, there is little about extant computational tools
that can be scientificallypredictedand very littlecausal explanation. CS in its first fifty years has restricted
itself largely to the bottom-left quadrant of this space. Wepropose to expand the perspective radically in
both dimensions.

Science proceeds from a combination of induction from observed data and deduction from a stated
theory. The initialtheory construction phasestarts from observation of phenomena to tentative hypotheses.
The goal here is to develop amodelof the world (that is, within the explicitly stated domain ofapplicability)
that can yield predictions that are are tested against data drawn from measurements of that world (see
Figure 6).

The familiar process of debugging code can be viewed as an example of model testing. Thereal world

10
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Figure 6: Model Testing ([Giere 1979, page 30])

consists of my program and its execution context: the compiler and the operating system and hardware on
which the program runs. I test this program with some specified input data, as well as the specified correct
output, which is what I hope the program will produce on this input data. I discover a flaw when the actual
execution (theobservation/experimentation) does not exactly correspond to the correct output. Through
code inspection, I create mymodel: the line of code that I feel contains the flaw that produced the fault. I
then form apredictionthroughreasoning or calculation: if I change that line of code, the regression test will
now result in the expected output. My test of this hypothesiswill tell me whether my model is an accurate
reflection of (fits or doesn’t fit) the world: does my predictionagree or disagreewith the data actually
produced when I reran the regression test? I could call this model a scientific theory, though it is not general
at all (it applies only to this one program), it is not very predictive (it applies only to this one input data set),
and it has weak explanatory power (it involves only the sliceof the program involved in this regression test),
thus placing this model towards the far bottom-left of Figure 5.

A scientific theory, its associated model, and predictions emanating from that model are tested until a
more general theory emerges through insightful, creative induction. That theory is tested by deducing hy-
potheses, testing those hypotheses, and either confirming or rejecting them. Inevitably the theory is refined
and its boundaries sharpened through further cycles of deductive testing and inductive refinement2, as illus-
trated in Figure 7. This evolution of scientific theories occurs as a competition between competing models,
with a range of evaluative tools to judge and select among them. The works of Ronald Giere [1979] and Paul
Cohen [1995] provide useful tools (methodological and analytical) to move up the empirical generalization
arrow of Figure 5 and to compare the relative strength of competing theories.

From prediction comes control. Improvement in our computational tools derives from the predictive
power of our scientific theories. Ultimately, the value to society of a specific ergalic theory derives from the
extent to which that theory provides engineering opportunities for improvement of a class of computational
tools and explains the inherent limitations of that class oftools. For example, Denning’s theory initially
enabled efficient virtual memory systems, at a time when suchsystems were ad hoc and at times inadequate.
His insight allowed us to see how programmers can adjust their approach to take advantage of locality, by,
for example, using new kinds of hardware and software architectures. His theory also explained why the
lack of sufficient main memory to hold a process’s working setwould inevitably result in poor performance.

2It should be acknowledged that this is a simplification; philosophers of science have argued for decades that this linearprocess
is much more complex and that theories and questions reflect the biases and cognitive processes of the researchers, just as with their
computational tools.

11



Induction
from

Observed
Data

Deduction
From
Theory

Theory
Tentative

Theory
Refined

Refinement
Further

Theory
Accepted

Evidence
Current Current Current Current

Evidence Evidence Evidence

Conceptual

Plane

Empirical

Plane

Figure 7: Theory construction, testing, and refinement ([Kohli 2008])

8 Interacting with Other Disciplines in Different Ways

To this point CS primarily has offered computational tools and computational thinking to the other sciences,
so that scientists in those domains can advance their own knowledge.

With ergalics, the flow can also go the other way: computer scientists can utilize the insights, method-
ologies, experimental strategies, formalisms, and extanttheories of other sciences to aid our understanding
of computational tools. Specifically, (i) psychology can contribute directly, through its understanding of the
structures and limitations of cognitive and non-cognitivethinking and of the challenging but often insightful
methodology of user studies; (ii) other behavioral and social sciences can also provide insights into the social
implications of human use of computational tools, such as how the internet is used; (iii) neurology, through
such tools as functional MRI, can start to identify physicalbrain structures that influence the creation and
use of tools; (iv) economics and sociology can provide both micro and macro behavioral clues, such as
how trust in security and privacy mechanisms may be attained, and (v) physics, chemistry, and biology can
provide evidence of computational processes in nature and possible theories and laws about those processes,
which would also govern the behavior of computational tools.

The models and theories these other fields have developed areall getting at the basic research questions
that Cohen articulated, concerning animals, organizations, systems, and (in ergalics) computational tools. It
is likely that the models will be more similar than different, because most arise from similar methodological
tools and support the same kinds of inference: prediction, generalization, control, and, occasionally, causal
explanation. Ergalics can do what these other sciences havedone and are doing: utilize the empirical
generalization of Figure 5 to ask the questions implied by Figure 4 and to follow the general approach of
theory construction, testing [Tichy 1998, Zelkowitz & Wallace 1997], and refinement of Figure 7.

The fact that ergalics utilizes a common scientific terminology with shared semantics and a common
research methodology can have another real benefit. Peter Lee, currently chair of Carnegie Mellon Uni-
versity’s Department of Computer Science, asks, why is it that “there isn’t much computing research in
the major core-science publications” [Lee 2008]. One possible reason is that CS does not as yet utilize the
methodology and terminology of science, nor does it ask the questions of science, nor does it seek scientific
theories. When CS participates in the market of enduring, technology-independent scientific theories (in this
case, of computational tools), computing research may become more relevant for core-science publications.
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9 A New Direction

Ergalics seeks insights that are not based on details of the underlying technology, but rather continue to hold
as technology inevitably and rapidly changes. It also seeksunderstanding of limitations on the construction
and use of computational tools imposed by the nature of computation and by the specifics of human cogni-
tion. Ergalics provides an opportunity to apply new approaches, new methodological and analytical tools,
and new forms of reasoning to the fundamental problems confronting CS and society in general. And it
seeks to do so by bringing science into CS.

Science provides a specific methodology which has been extremely productive and beneficial in other
sciences. The development of scientific theories in CS can produce new insights and better outcomes than
restricting ourselves to the mathematical and engineeringperspectives. Denning’s recent assessment is
hopeful, but as yet unrealized: “The science paradigm has not been part of the mainstream perception of
computer science. But soon it will be” [Denning 2005a, page 31].

As Jeannette Wing stated in a talk [Wing 2008] at Stanford on May 21, 2008, the fundamental question
of the Network Science and Engineering (NetSE) initiative is, “Is there asciencefor understanding the
complexity of our networks such that we canengineerthem to have predictable behavior?” (emphases in the
original). Ergalics generalizes this challenge tocomputational toolsand tocomputationitself, manifesting
scientific theories across CS disciplines and enabling the engineering advances enabled by such theories. To
achieve this result, we need to restructure the educationaland scholarly ethos of CS to also encourage and
enable the scientific perspective.

Bill Wulf has observed [1995] that “Young as we [the discipline of CS] are, I think we really don’t
have a choice to be science or engineering; we are science andengineering, and something more, too.”
Figure 8 shows how the three perspectives, with science in the middle, symbiotically relate. Mathematics
is often useful in providing formalisms to succinctly express theories (thus, aiding parsimony) and fit them
in with other models of nature (generality). It also gives usa way to think about deep structure, and thus
helps us to expose that structure. Science can be useful to engineering by explicating the underlying causal
mechanisms (prediction and control). Similarly, engineering reveals behavior (phenomena) that science can
use to construct new theories, and science provides needs for new formalisms and theorems.

As an example from aeronautics, the mathematics perspective has developed non-linear differential
equations, in particular the Navier-Stokes equations, which can be used in the momentum equations for
fluids such as air. The scientific perspective has used such formalisms to express thermodynamic laws, such
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as the perfect gas equation of state, relating pressure, density, and temperature. This physical theory allows
one to accurately predict the viscous flow of a fluid around an object and the impact of changing temperature
and pressure. The engineering perspective uses, for example, the Reynolds number, a notion grounded in
these scientific laws, to scale data from wind tunnel experiments on wing shapes to their real-life counter-
parts.

This structure can be applied to CS, with concrete mathematics [Graham, Knuth, and Patashnik 1994]
and complexity theory to the left, ergalics in the center, and most of conventional CS on the right. (In fact,
an important objective of this essay has been to characterize exactly what that center component consists
of, what a science of computer science would entail, in termsof its objects of study, its methodology, and
its emerging understanding.) An increased emphasis on ergalics will bring balance to this interrelationship,
providing a solid foundation upon which to make great strides in the engineering of computational tools,
thereby dramatically increasing their performance, efficacy, and reliability.

10 Benefits

How might the articulation of scientific theories of computational tools benefit society? This question can
be approached in several ways.

First, looking back over the last three hundred years, it is clear that many if not most of the technologies
that emerged wereprecededby a deep understanding afforded by scientific theories and mathematical for-
malisms and theorems. Consider the $10 GPS chip in all cell phones. This advance required Newton’s Laws
of Motion and the mathematics of celestial navigation to place the GPS satellites in geosynchronous orbit,
Bohr’s Atomic Theory to enable the Cesium atomic clocks on those satellites, Electromagnetic Theory and
Maxwell’s equations to enable the efficient transmission and reception of weak radio signals, and Quantum
Mechanics and Shrödinger’s equations to enable the construction of tiny switching transistors within the
GPS chip. A similar analysis for other engineering breakthroughs over the last few centuries emphasizes
that the discovery and elaboration of a scientific theory andits associated mathematical underpinning and
deep understanding oftenenabledthe engineering advance.

Second, an historical analysis of CS over its fifty-year lifetime also shows the critical role of scientific
theories. In the mid-1960’s, operating systems were at a crossroads. Companies “were reporting their
systems were susceptible to a new, unexplained, catastrophic problem they called thrashing. Thrashing
seemed to have nothing to do with the choice of replacement policy. It manifested as a sudden collapse of
throughput as the multi-programming level rose” [Denning 2005b, page 21]. The ergalic theory of locality
and its understanding of the central role that the working set played was followed by appropriate page
replacement and job scheduling algorithms that solved thiscatastrophic problem.

However, the true benefits of a science of computation, of to-be-articulated ergalic theories, are im-
possible to predict, because scientific theories, by virtueof the deep understanding they encapsulate, are
transformational and disruptive. Given the well-established connection, in some cases causal, from scien-
tific theory to engineering innovation, the discovery of ergalic theories may be a necessary prerequisite for
some innovations. And it is probable that the solutions of many of the technological problems related to
our use of computational tools will require engineering innovations that are predicated on ergalic theories
still to be articulated. In consideration of the advances ofinformation technology that have resulted from
the interplay of two primary perspectives, mathematics andengineering, might the incorporation of athird
perspective accelerate innovation, energize and intriguestudents, and increase public support?
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11 An Opportunity

People use computational tools. People also construct these tools. Computational tool construction and use
is one of the ways that humans are unique. The tools that humans produce and the ways that they use such
tools are profoundly affected by the way that humans think. Ultimately, understanding computational tools
enables us to build better tools, and helps us to understand what makes us human.

Computation also appears to be a fundamental process in nature. If so, the scientific perspective affords
a way to better understand our world.

Unlike established sciences, where many if not most of the fundamental theories have already been
discovered [Horgan 1996, Horgan 2004] (though much elaboration remains), the theories of ergalics are
still out there, just waiting to be uncovered. Who will discover the CS equivalents of Einstein’s theory of
relativity, of Mendel’s theory of heredity, of Darwin’s theory of evolution, of Festinger’s theory of cognitive
dissonance, of Pauling’s theory of chemical reactions?
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